
www.manaraa.com
12 American Scientist, Volume 91

Last night I called technical support for the
universe to report a bug. They kept me on
hold for eternity, but finally I lodged my

complaint: Some things in this world take entire-
ly too long to compute—exponentially so, in the
worst cases. “That’s not a bug, that’s a feature,”
was the inevitable reply. “It keeps the universe
from running down too fast. Besides, NP-com-
plete calculations are an unsupported option,
which void your warranty. And where is it writ-
ten that anything at all is guaranteed to be effi-
ciently computable? Count yourself lucky that
1+1 is a polynomial-time calculation.”

Perhaps cosmic tech support is right: Quick and
easy answers to computational questions are not
something we are entitled to expect in this world.
Still, it’s puzzling that some calculations are so
much harder than others. The classic example is
multiplication versus factoring. If you are given
two prime numbers, it’s easy to multiply them,
yielding a bigger number as the product. But try-
ing to undo this process—to take the product and
recover the two unknown factors—seems to be
much more difficult. We have fast algorithms for
multiplying but not for factoring. Why is that?

Although the help desk is stumped by such
questions, there has been some progress lately in
understanding the sources of difficulty in at least
one family of computational tasks, those known
as constraint-satisfaction problems. The new line
of inquiry doesn’t quite explain why some of
these problems are hard and others are easy, but
it traces the boundary between the two classes
in considerable detail. Furthermore, a better map
of the problem-solving landscape has led to a
novel algorithm that pushes back a little further
the frontier of intractability. The algorithm, called
survey propagation, could well have important
practical applications.

Where the Hard Problems Are
The new algorithm weaves together threads from
at least three disciplines: mathematics, computer
science and physics. The theme that binds them
all together is the presence of sudden transitions
from one kind of behavior to another.

The mathematical thread begins in the 1960s
with the study of random graphs, initiated by
Paul Erdős and Alfred Rényi. In this context a
graph is not a chart or plot but a more abstract
mathematical structure—a collection of vertices
and edges, generally drawn as a network of dots
(the vertices) and connecting lines (the edges). To
draw a random graph, start by sprinkling n ver-
tices on the page, then consider all possible pair-
ings of the vertices, choosing randomly with
probability p whether or not to draw an edge
connecting each pair. When p is near 0, edges are
rare, and the graph consists of many small, dis-
connected pieces, or components. As p increases,
the graph comes to be dominated by a single
“giant” component, which includes most of the
vertices. The existence of this giant component is
hardly a surprise, but the manner in which it de-
velops is not obvious. The component does not
evolve gradually as p increases but emerges sud-
denly when a certain threshold is crossed. The
threshold is defined by a parameter I’ll call α,
which is the number of edges divided by the
number of vertices. The giant component is born
when α is about 1/2.

In computer science, a similar threshold phe-
nomenon came to widespread attention in the ear-
ly 1990s. In this case the threshold governs the
likelihood that certain computational problems
have a solution. One of these problems comes
straight out of graph theory: It is the k-coloring
problem, which asks you to paint each vertex of a
graph with one of k colors, under the rule that two
vertices joined by an edge may not have the same
color. Finding an acceptable coloring gets harder
as α increases, because there are more edges im-
posing constraints on each vertex. Again, the
threshold is sharp: Below a certain α ratio, almost
all graphs are k-colorable, and above this thresh-
old almost none are. Moreover, the threshold af-
fects not only the existence of solutions but also
the difficulty of finding them. The computational
effort needed to decide whether a graph is k-col-
orable has a dramatic peak near the critical value
of α. (An influential paper about this effect was
aptly titled “Where the really hard problems are.”)

Physicists also know something about thresh-
old phenomena; they call them phase transitions.
But are the changes of state observed in random
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graphs and in constraint-satisfaction problems
truly analogous to physical events such as the
freezing of water and the onset of magnetization
in iron? Or is the resemblance a mere coinci-
dence? For a time there was controversy over this
issue, but it’s now clear that the threshold phe-
nomena in graphs and other mathematical struc-
tures are genuine phase transitions. The tools and
techniques of statistical physics are ideally suited
to them. In particular, the k-coloring problem can
be mapped directly onto a model of a magnetic
system in solid-state physics. The survey-propa-
gation algorithm draws on ideas developed orig-
inally to describe such physical models.

Where the Hard Problems Aren’t
Survey propagation is really a family of algo-
rithms, which could be applied in many different
realms. So far, the method has been tested on two
specific problems. The first of these is Boolean
satisfiability, or SAT, where the aim is to solve a
large formula in symbolic logic, assigning values
of true or false to all the variables in such a way
that the entire formula evaluates to true. The sec-
ond problem is k-coloring. Because I have written
about satisfiability on an earlier occasion, I shall
adopt k-coloring as the main example here. I fo-
cus on three-coloring, where the palette of avail-
able colors has just three entries.

Three-coloring is a hard problem, but not an
impossible one. The question “Is this graph
three-colorable?” can always be answered, at
least in principle. Since each vertex can be as-
signed any of three colors, and there are n ver-

tices, there must be exactly 3n ways of coloring
the graph. To decide whether a specific graph is
three-colorable, just work through all the combi-
nations one by one. If you find an assignment
that satisfies the constraint—that is, where no
edges yoke together like-colored vertices—then
the answer to the question is yes. If you exhaust
all the possibilities without finding a proper col-
oring, you can be certain that none exists.

This algorithm is simple and sure. Unfortu-
nately, it’s also useless, because enumerating 3n

colorings is beyond the realm of practicality for
any n larger than 15 or 20. Some more-sophisti-
cated procedures can retain the guarantee of an
exact and exhaustive search while reducing the
number of operations to fewer than 1.5n. This is a
dramatic improvement, but it is still an exponen-
tial function, and it merely raises the limit to n=50
or so. For large graphs, with thousands of ver-
tices, all such brute-force methods are hopeless.

On the other hand, if you could somehow
peek at the solution to a large three-coloring
problem, you could check its correctness with
much less labor. All you would have to do is go
through the list of edges, verifying that the ver-
tices at the ends of each edge carry different col-
ors. The number of edges in a graph cannot be
greater than n2, which is a polynomial rather
than an exponential function and which there-
fore grows much more slowly.

Problems with answers that are hard to find
but easy to check are the characteristic signature
of the class called NP (which stands for “nonde-
terministic polynomial”). Three-coloring is a
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Figure 1. Graph coloring is one of several computational problems that have a sharp threshold where they get much harder to solve. A graph is
a collection of vertices and edges, represented by dots and lines; the coloring problem is to assign each vertex a color—in this case chosen from
a palette of just three—in such a way that no edge connects two vertices of the same color. When the ratio of edges to vertices is less than about
2.35, most random graphs can be colored in this way; above the threshold, very few can. The graph shown here has 100 vertices and 218 edges, and
so it is a little below the threshold. A new algorithm called survey propagation has successfully colored graphs with up to a million vertices. The
two diagrams above are views of the same graph; the circular arrangement at right makes it easier to verify that no edges link like-colored vertices.
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charter member of NP and also belongs to the
more-elite group of problems described as NP-
complete; the same is true of satisfiability. Bar-
ring a miracle, there will be no polynomial-time
algorithms for NP-complete problems.

Having thus established the credentials of
three-coloring as a certifiably hard problem, it is
now time to reveal that most three-coloring prob-
lems on random graphs are actually quite easy.
Given a typical graph, you have a good chance of
quickly finding a three-coloring or proving that
none exists. There is no real paradox in this curi-
ous situation. The classification of three-coloring
as NP-complete is based on a worst-case analy-
sis. It could be overturned only by an algorithm
that is guaranteed to produce the correct answer
and to run in polynomial time on every possible
graph. No one has discovered such an algorithm.
But there are many algorithms that run quickly
most of the time, if you are willing to tolerate an
occasional failure.

One popular strategy for graph-coloring algo-
rithms is backtracking. It is similar to the way
most people would attack the problem if they

were to try coloring a graph by hand. You start
by assigning an arbitrary color to an arbitrary
vertex, then go on to the neighboring vertices,
giving them any colors that do not cause a con-
flict. Continuing in this way, you may eventually
reach a vertex where no color is legal; at that
point you must back up, undoing some of your
previous choices, and try again.

Showing that a graph cannot be three-colored
calls for another kind of algorithm. The basic ap-
proach is to search for a small cluster of vertices
that—even in isolation from the rest of the
graph—cannot be three-colored. For example, a
“clique” made up of four vertices that are all
linked to one another has this property. If you
can find just one such cluster, it settles the ques-
tion for the entire graph.

Algorithms like these are very different from
the brute-force, exhaustive-search methods. The
simple enumeration of all 3n colorings may be
impossibly slow, but at least it’s consistent; the
running time is the same on all graphs of the
same size. This is not true for backtracking and
other inexact or incomplete algorithms; their per-
formance varies widely depending on the nature
of the graph. In particular, the algorithms are
sensitive to the value of α, the ratio of edges to
vertices, which again is the parameter that con-
trols the transition between colorable and uncol-
orable phases. Well below the critical value of α,
where edges are sparse, there are so many ways
to color the graph successfully that any reason-
able strategy is likely to stumble onto one of
them. At the opposite extreme, far above the
threshold, graphs are densely interconnected, and
it’s easy to find a subgraph that spoils the chance
of a three-coloring. The troublesome region is be-
tween these poles, near the threshold. In that mid-
dle ground there may be just a few proper color-
ings, or there may be none at all. Distinguishing
between these two situations can require check-
ing almost every possible assignment.

Where the Solutions Are
The critical value of α is about 2.35. In other
words, if a random graph with n vertices has
fewer than 2.35n edges, it can almost surely be
three-colored; if it has more than 2.35n edges, a
three-coloring is unlikely. Moreover, the transi-
tion between these two regimes is known to be
sharp; it is a true discontinuity, a sudden jump
rather than a smooth gradation. To put this idea
more formally, the width of the transitional re-
gion tends to zero as n tends to infinity.

The sharpness of the phase transition could be
taken as encouraging news. If algorithms for de-
ciding colorability bog down only in the transi-
tional region, and if that region is vanishingly
narrow, then the probability of encountering a
hard-to-classify graph is correspondingly small.
But it seems the universe has another bug (or fea-
ture). In the first place, the sharpness of the col-
orability transition is assured only for infinitely
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Figure 3. Computational effort needed to decide whether or not a for-
mula is satisfiable has a peak near the phase transition. Problems well
below the threshold are easy to solve, and those well above it are easi-
ly proved unsolvable; it’s the ones in the middle that require patience.
(The data in Figures 2 and 3 were previously published in Hayes 1997.)
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Figure 2. Transition between solvable and unsolvable phases is
shown for the problem known as satisfiability, in which the task is to
assign values of true or false to the variables in a logical formula made
up of many clauses. As the ratio of clauses to variables increases, the
problem changes from almost always solvable to almost never solv-
able. The transition gets sharper for larger problems.
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large graphs; at finite n, the corners of the transi-
tion curve are rounded. And there is another dis-
rupting factor, which has been recognized only
recently. It has to do not with the structure of the
graph itself but with the structure of the set of all
solutions to the coloring problem.

Although the uncolorable phase does not be-
gin until α ≈ 2.35, experiments have shown that
algorithms begin slowing down somewhat earli-
er, at values of α around 2.2. The discrepancy
may seem inconsequential, but it is too large to
be explained merely by the blurring of the phase
transition at finite n. Something else is going on. 

To understand the cause, it helps to think of all
the possible three-colorings of a graph spread out
over a surface. The height of the surface at any
point represents the number of conflicts in the
corresponding coloring. Thus the perfect color-
ings (those with zero conflicts) all lie at sea level,
while the worst colorings create high-altitude
peaks or plateaus. Of course the topography of
this landscape depends on the particular graph.
Consider how the surface evolves as α gradually
increases. At low values of α there are broad
basins and valleys, representing the many ways
to color the graph perfectly. At high α the land-
scape is alpine, and even the lowest point is well
above sea level, implying a complete absence of
perfect colorings. The transitional value α ≈ 2.35
marks the moment when the last extensive areas
of land at sea level disappear.

What happens in this “solution space” at
α ≈ 2.2? It turns out this is the moment when a
broad expanse of bottomland begins breaking up
into smaller isolated basins. Below 2.2, nearly all
the perfect colorings form a single giant connect-
ed cluster. They are connected in the sense that
you can convert one solution into another by
making relatively few changes, and without in-
troducing too many conflicts in any of the inter-
mediate stages. Above 2.2, each basin represents
an isolated cluster of solutions. Colorings that lie
in separate basins are substantially different, and
converting one into another would require climb-
ing over a ridge formed by colorings that have
large numbers of conflicts. Algorithms that work
by conducting a local search are unlikely to cross
such ridge lines, and so they remain confined for
long periods to whichever basin they first wan-
der into. As α increases above 2.2, the number of
perfect colorings within any one basin dwindles
away to zero, and so the algorithms may fail to
find a solution, even though many proper color-
ings still exist elsewhere on the solution surface.

This vision of solutions spread out over an un-
dulating landscape is a familiar conceptual de-
vice in many areas of physics. Often the land-
scape is interpreted as an energy surface, and
physical systems are assumed to run downhill
toward states of minimum energy. This analogy
can be pursued further, setting up a direct corre-
spondence between the k-coloring of graphs and
a model of magnetic materials.

Where the Spins Are
Models of magnetism come in baffling varieties.
The basic components are vectors that represent
atomic spins. Usually the spins are arranged in a
regular lattice, as in a crystalline solid, and the
vectors are constrained to point in only a few
possible directions. In a model of a ferromagnet,
nearby spins have positive couplings, meaning
that the energy of the system is lower when the
spins line up in parallel. An antiferromagnet has
negative couplings, favoring spins that point in
different directions. The problem of three-color-
ing a graph can be seen as a model of an antifer-
romagnet in which each spin has three possible
directions, corresponding to the three colors. It is
antiferromagnetic because the favored state is
one where the colors or the spins differ. 

Most spin-system models focus on the effects
of thermal fluctuations and the countervailing
imperatives to minimize energy and to maximize
entropy. In this respect the graph-coloring model
is simpler than most, because the condition of in-
terest is at zero temperature, where entropy can
be neglected. On the other hand, the model is
more complicated in another way: The spins are
embedded in a graph with random interconnec-
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Figure 4. Random walks through the space of graph colorings offer
some hints to why it’s hard to find a perfect coloring. Each walk begins
with a correct coloring and then repeatedly changes the color of a ran-
domly chosen vertex. The traces record the number of color conflicts
(edges connecting like-colored vertices) over 2,000 steps. Although all
three graphs are known to be colorable, the random walk discovers
perfect colorings only for the smallest graph (bottommost trace).
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tions, more like a glass than the geometrically
regular lattice of a crystal.

Having translated the coloring problem into the
language of spin physics, the aim is to identify the
ground state—the spin configuration of minimum
energy. If the ground-state energy is zero, then at
least one perfect coloring exists. If the energy of
the spins cannot be reduced to zero, then the cor-
responding graph is not three-colorable. The min-
imum energy indicates how many unavoidable
conflicts exist in the colored graph.

Of course recasting the problem in a new vo-
cabulary doesn’t make the fundamental difficul-
ty go away. In graph coloring, when you resolve
a conflict by changing the color of one vertex,
you may create a new conflict elsewhere in the
graph. Likewise in the spin system, when you
lower the energy of one pair of coupled spins,
you may raise it for a different pair. Physicists re-
fer to this effect as “frustration.”

Interactions between adjacent spins can be
viewed as a kind of message-passing, in which
each spin tells its neighbors what they ought to
do (or, since the coupling is antiferromagnetic,
what they ought not to do). Translating back into
the language of graph coloring, a green vertex
broadcasts a signal to its neighbors saying “Don’t
be green.” The neighbors send back messages of
their own—”Don’t be red,” “Don’t be blue.” The
trouble is, every edge is carrying messages in both
directions, some of which may be contradictory.
And feedback loops could prevent the network
from ever settling down into a stable state.

A remedy for this kind of frustration is known
in condensed-matter physics as the cavity method.
It prescribes the following sequence of actions:
First, choose a single spin and temporarily re-
move it from the system (thereby creating a “cav-
ity”). Now, from among the neighbors surround-
ing the cavity, choose one node to regard as an
output and consider the rest to be inputs. Sum up
the signals arriving on all the input edges, and
pass along the result to the output. The effect is to
break open loops and enforce one-way commu-
nication. Finally, repeat the entire procedure with
another spin, and continue until the system con-
verges on some steady state.

The cavity method was first applied to con-
straint-satisfaction problems by Marc Mézard of
the Université de Paris Sud, Giorgio Parisi of the
Università di Roma “La Sapienza” and Riccardo
Zecchina of the Abdus Salam International Cen-
tre for Theoretical Physics in Trieste. Initially it
was a tool for calculating the average properties
of statistical ensembles of many spin systems.
About a year ago, Mézard and Zecchina realized
that it could also be adapted to work with indi-
vidual problem instances. But a significant
change was needed. Instead of simple messages
such as “Don’t be green,” the information trans-
mitted from node to node consists of entire prob-
ability distributions, which give a numerical rat-
ing to each possible spin state or vertex color.

Mézard and Zecchina named the algorithm
survey propagation. They got the “propagation”
part from another algorithm that also inspired
their work: a technique called belief propagation,
which is used in certain error-correcting codes.
“Survey” is meant in the sense of opinion poll:
The sites surrounding a cavity are surveyed for
the advice they would offer to their neighbors.

Where the Bugs Are
Over the past year the concept of survey propa-
gation has been further refined and embodied in
a series of computer programs by Mézard and
Zecchina and a group of coworkers. Contribu-
tors include Alfredo Braunstein, Silvio Franz,
Michele Leone, Andrea Montanari, Roberto
Mulet, Andrea Pagnani, Federico Ricci-Tersenghi
and Martin Weigt.

To solve a three-coloring problem on a graph
of size n, the algorithm first finds the vertex that
is most highly biased toward one color or anoth-
er, and permanently sets the color of that vertex
accordingly. Then the algorithm is invoked re-
cursively on the remaining graph of n–1 vertices,
so that another vertex color is fixed. Obviously
this process has to terminate after no more than n
repetitions. In practice it usually stops sooner,
when all the signals propagating through the net-
work have become messages of indifference,
putting no constraints on neighboring nodes. At
this point survey propagation has nothing more
to offer, but the graph that remains has been re-
duced to a trivial case for other methods.

As with other algorithms for NP-complete
problems, survey propagation comes with no
guarantees, and it does sometimes fail. The
process of deciding which vertex to fix next is not
infallible, and when a wrong choice is made, there
may be no later opportunity to recover from it.
(Adding some form of backtracking or random-
ized restarting might alleviate this problem.) In
its present form the algorithm is also strictly one-
sided: It can usually color a colorable graph, but it
cannot prove a graph to be uncolorable.

Nevertheless, the algorithm has already had
some impressive successes, particularly in the
hard-to-solve region near the phase transition.
The version for satisfiability has solved problems
with 8 million variables. The graph-coloring pro-
gram handles graphs of a million vertices. Both of
these numbers are two orders of magnitude be-
yond what is routine practice for other methods.

Graph coloring and satisfiability are not just
toy problems for theorists. They are at the core of
various practical tasks in scheduling, in the engi-
neering of silicon circuits and in optimizing com-
puter programs. Having an algorithm capable of
solving much larger instances could open up still
more applications.

Ironically, although survey propagation works
well on enormous problems, it sometimes stalls
on much smaller instances, such as random
graphs with only a few hundred vertices. This is
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not a pressing practical concern, since other
methods work well in this size range, but it’s an-
noying, and there’s the worry that the same fail-
ures might show up in larger nonrandom graphs.
The cause of these small-graph failures is not yet
clear. It may have to do with an abundance of
densely nested loops and other structures in the
graphs. Then again, it may be just another bug in
the universe.
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